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1 Introduction

When a unit square is folded to create an origami model in three-dimensional space, the edge
of the paper forms a closed curve in space with a total length equal to four units. We know
that the model fully determines its edge, but it can be interesting to derive a model when its
boundary curve (or polyline for classic models utilizing only straight folds) is given. In other
words, we would like to know to what extent the edge determines the model.

This is quite a general question, and a complete solution is more of a theoretical than practical
nature. Reconstructing a possible origami model from known properties of the edges can be
restricted to various specific types of closed curves or polylines, however, and such restrictions
can yield models with some very interesting special properties.

In this paper, I present some results of such reconstructions pertaining to boundaries composed
wholly of edges of platonic solids. I will refer to the resulting origami models as Platonic-Edge
Origamis, or PEOs for short.

I will be using some of the usual shortcuts in terminology, making some useful simplifications
identifying objects that can exist in the physical world with theoretical contructs in ways that
I can only hope that no one will actively object to. A “sheet of paper” will be assumed to be
a plane (and thus infinite) embedded in R3 (or, equivalently, in euclidean 3-space E3). A “unit
square” will be a square section of such a plane with sides of unit length. An “origami model”
(or simply an “origami”) will be a connected collection of plane objects that can result from
the unit square by folding procedures. The plane sections of the origami model will be referred
to as “facets” of the origami model, and its edges will be referred to as “creases”, if they are
not part of the bounding polyline. This means that the term “edge” will be reserved for a line
segment, which is a section of the bounding polyline.

I will also assume that the origami models are, in general, not flat, but rather of a general three-
dimensional nature. I will, however assume that all facets of all considered origamis are planar
(convex) polygons.
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2 Restrictions on Polylines Composed of Edges of Platonic Solids

There are several a priori restrictions to polylines that could possibly be boundaries of origami
models folded from a unit square, and such restrictions are considered in [1].

Some of these are quite obvious. For instance, not only must the total length of the polyline be
equal to four units, the fact that the edges of the unit square are at right angles to each other has
an immediate consequence. This implies that the polyline must consist of four sections, each
of unit length, with the angles in the corners joining the sections each no larger than a right
angle. The latter will, for instance, have consequences with respect to the search for certain
types of PEOs on the dodecahedron, since the angles between any two adjoining edges of a
dodecahedron are always equal to the interior angle of a regular pentagon, i.e. 108◦, and thus
larger than a right angle.

For the purposes of this paper, we will call a polyline possible, if it fulfills all the requirements
of the edges of an origami model. In this context, we will not need to worry about the precise
restrictions this involves, but it will be useful to be able to refer to “possible” polylines, to
distinguish them from general polylines in E3.

An important restriction for finding PEOs results from the fact that the polyline must be either
closed or contain certain edges multiple times. The first option means that there must exist a
closed path on the Platonic solid, composed of edges, which may be traversed once or several
times. If we do not insist on a closed polyline in space, the edge of the origami model must
nevertheless be “closed” in the sense that we can follow the path all the way around the edges
of the folding square without ever departing from the edges, and returning to the point in which
we started. An example of such a path is shown in Figure 1.

Figure 1: a “closed” path on a non-closed group of tetrahedron edges

At this juncture, we have not yet decided whether we will be able to find PEOs of specific types
with such a boundary, of course, but we can consider it “closed” from the point of view of the
edge of a possible model, even though the four tetrahedron edges shown do not actually form a
closed polyline.
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3 Categories of Platonic.Edge Origamis

There are several categories of origamis we can search for in the given context. For instance,
we can consider the following types:

1. (A): an origami whose edge is composed of four line segments of unit length, which
correspond to four edges of a certain Platonic solid

2. (B): an origami whose edge is a closed polyline, all segments of which correspond to
edges of a certain Platonic solid, without any edge being covered more than once

3. (C): an origami whose edge is a closed polyline, all segments of which correspond to
edges of a certain Platonic solid, without restrictions on an edge being covered more than
once

4. (D): an origami whose edge is composed of line segments which cover all edges of a
certain Platonic solid

5. (E): an origami whose edge is composed of line segments of the longest possible length
while corresponding to a specific number of edges of a certain Platonic solid

6. (F): an origami whose edge is composed of line segments corresponding to a specific
number of edges of a certain Platonic solid without regard to their length

It is clear that this list is not complete, but it gives us a nice illustration of the number of possible
types of origamis we can seek to create with their edges corresponding exclusively to edges of
Platonic solids. We will use some of the designations from this list for the types of origamis in
the text to follow.

Even a cursory glance at this list gives us the feeling that PEOs of some of these types will be
of more interest than others. It would seem that type (A) or type (E) PEOs would be more in-
triguing than type (C), for instance, although such an initial impression may be quite deceptive.
The taxonomy will prove to be quite useful, however, when we want to refer to models with
certain specific properties.

4 One-edge Platonic-Edge Origamis and Models Derived from Them

With these preliminary remarks out of the way, we are now ready to face the challenge of
finding concrete Platonic-Edge Origamis with various properties. The simplest solution to
the general problem of finding an origami model whose edges all lie on the edges of a given
Platonic solid is the unit square itself, of course. It is already the face of a cube, or alternatively
the central planar intersection of a regular octahedron, as illustrated in Figure 2.

3



Figure 2: the trivial PEO

We therefore obtain our first PEO model without any folding at all.

This observation starts us on our journey, but we find a solution almost as trivial by folding the
unit square in such a way that the edges all coincide. Two simple ways to do this are illustrated
in Figures 3 and 4. In the left-hand figures, we first fold the unit square diagonally and then
fold the resulting triangle in half again. In the right-hand figures, we see the classic water-bomb
base.

In each of these two cases, the edge of the resulting origami is a line segment of unit length,
covered four times. This line segment can be interpreted as an edge of any Platonic solid,
of course. Since such an edge can never be longer than one unit, these are extremely basic
examples of PEOs of type (E).

Figure 3: one edge folding patterns
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Figure 4: one edge models

Since we can fold the triangles of these models in zig-zags, as shown in 5, the folding square
can, in principle, be reduced to a thin strip that we can treat as a line segment, which can then
be folded to cover any polyline we wish.

Figure 5: zig-zag

Of course, this is a purely theoretical option if we need to zig-zag any more than shown here,
as the thickness of the paper will start to play a big role in limiting our folding options. Also, if
we want to create something like a PEO whose edge covers all 30 edges of an icosahedron, the
length of each individual edge will be very small (less than 1

30 of the unit length in this specific
case), which creates another physical limit to what can actually be done with real paper.

If we take a closer look at the water-bomb base, we find that this simple starting point yields the
solutions to some intriguing problems that we can pose with respect to the edges of a Platonic
Solid. Two nice examples are shown in Figure 6.

On the left of this figure, we have marked four edges of a cube, which can be interpreted as
looking a bit like a capital M. We set ourselves the problem of folding a unit square in such
a way that the edge of the square comes to lie exclusively on the line segments of this M,
covering it completely. Similarly, on the right, we have marked six edges, including the four
already marked on the left, but now also adding the other two sides of the top-most square of the
cube. Again, we aim to fold a unit square with the analogous goal of covering these segments.
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Figure 6: M on cube edges

In order to solve both of these challenges, one option is to fold the water-bomb base in the
middle as illustrated in Figure 7.

Figure 7: first step

We can flatten this figure and treat it as if it were a triangle, as shown in Figure 8. A solution
for the M will result by simply folding the overhanging sections of the triangle down, and a
solution for the six-edged configuration will result by folding the front flaps down in the same
way, and simultaneously folding the rear flaps back.
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Figure 8: first step pushed together

We first consider the solution to the M configuration. As we see in Figure 9, two valley folds
are required to bring the overhanging parts of the edge to conicide with the vertical cube edges,
resulting in the situation illustrated in Figure 10.

Figure 9: first step pushed together with folds
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Figure 10: PEO with its edge on the M

The solution to the right-hand configuration is then quite similar. As illustrated in Figure 11,
two valley folds in the front flaps again bring the overhanging front parts of the edge to conicide
with the vertical cube edges, while two mountain vertical folds in the back flaps bring the
overhanging back parts of the edge to coincide with the two remaining cube edges. This results
in the situation illustrated in Figure 12.

Figure 11: first step pushed together with folds in both directions
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Figure 12: the second PEO

5 Type (A) PEOs

In this section, we will take a look at the matter of finding Type (A) PEOs, i.e. origamis, whose
edges are composed of four line segments of unit length, corresponding to four edges of a
specific Platonic solid. The trivial PEOs we have already seen in Figure 2 are both examples.

In order to find such an origami, we must first identify a closed 4-edge path on a Platonic solid,
and then decide how to fold the unit square such that its edge coincides with this path, under
the assumption that the edges of the solid are all of unit length. We have already mentioned the
trivial PEO covering the face of a cube, and this is the only possible Type (A) PEO with edges
on a cube, as the sides of a square cube face form the only possible closed polyline composed of
four edges of the cube. We also immediately note that there can be no Type (A) PEO with edges
on a dodecahedron, as there is no closed polyline composed of four edges of a dodecahedron.

We can therefore restrict our attention in the following to Type (A) PEOs on the Platonic solids
with triangular faces.

As we see in Figure 13, there can also be no Type (A) PEO with its edges on an icosahedron.
The only possible 4-edge path on the edges of an icosahedron is composed of edges of two
adjacent triangles, as illustrated here by the quadrilateral ABCP, whose edges lie on the adjacent
triangles ABP and CPB. If it were possible to fold a unit square in such a way that its edges
come to coincide with the edges of ABCP, two diagonally opposite vertices of the folding
square would come to lie in points A and C. However, AC is a diagonal of a regular pentagon
ABCDE, whose sides are edges of the icosahedron, and thus have unit length. The length of
AC is therefore equal to

√
5+1
2 . The diagonal of the unit square, however, has a length of

√
2,

and since
√

5+1
2 > 1.6 >

√
2 the existence of such a model would imply that it was possible to

fold the unit square in such a way that the distance between diagonally opposite vertices grows
larger during the folding process, which is clearly impossible.
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Figure 13: 4-edge path on icosahedron edges

Next, we consider Type (A) PEOs with edges on an octahedron. In Figure 14, we see a similar
situation to the one previously considered for the icosahedron.

Figure 14: 4-edge path on octahedron edges

Other than the square we previously encountered in the trivial solution shown in Figure 2, the
only possible 4-edge path on the edges of an octahedron is composed of edges of two adjacent
triangles. In this case, we again have a quadrilateral ABCP, whose edges lie on the adjacent
triangles ABP and CPB. If we wish to fold a unit square in such a way that its edges coincide
with the edges of ABCP, two diagonally opposite vertices of the folding square must come to
lie in points A and C. Since ABCD is a square, the length of AC is equal to the length

√
2 of

the diagonal of the unit square, and must therefore remain unchanged by the folding procedure.
This implies that triangles ABC and ACP are each half of the folding square, which yields the
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position shown on the right of the figure (rotated by 90◦). In this way, we see that a Type (A)
PEO is obtained by folding the square at a right angle along one of its diagonals.

So far, we have determined that there are no Type (A) PEOs on either the dodecahedron or
the icosahedron, only the trivial PEO on the cube, and the trivial PEO as well as one other
quite simple one on the octahedron. What remains is to find a Type (A) PEO on the regular
tetrahedron. Once again, we require a closed 4-edge path on this solid, and the only such path
possible is again composed of edges of two adjacent triangles, as shown in Figure 15.

Figure 15: possible 4-path on a tetrahedron

Folding the square to bring the edges into this position is not difficult. We can simply fold the
square as shown in Figure 16, noting that the inner point of the square in which the four folds
meet is the point dividing the diagonal of the square in the ratio 1 : 3. In order to make clear
why this yields a PEO with the required properties, we consider the following steps.

Figure 16: folding pattern for tetrahedron PEO and resulting model

In Figure 17, we have folded the square on its diagonal and placed the result in a system
of coordinates, such that two adjacent sides of the square come to lie in AB and BC with
an equilateral triangle ABC. As the sides of the square have unit length, this means that the
coordinates of these three points are A(1

2 ,0,0), B(0,
√

3
2 ,0) and C(−1

2 ,0,0).
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Figure 17: tetrahedron step 1

We note that triangle ACD is then also equilateral, since the sides of the folding square are all of
the same length. Next, in Figure 18, we introduce the xz-coordinate plane. This plane intersects
the line BD in a point we name E.

Figure 18: tetrahedron step 2

We will show that this point E is the point dividing BD in the ratio 1 : 3. If we now reflect the
part of the model with negative y-coordinates on the xz-coordinate plane as shown in Figure 19,
point D goes to the symmetric point P, and we obtain the model shown in Figure 16. By
symmetry, it is clear that triangle PAC is congruent to triangle DAC, which we have already
noted to be equilateral.
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Figure 19: tetrahedron step 3

In order to show that AB, BC, CP and PA are indeed edges of a common regular tetrahedron,
it only remains to show that OF = 1

3 ·OB, with F denoting the foot of point P on the plane of
triangle ABC (i.e. the xy-coordinate plane).

Figure 20: calculating distances
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In order to do this, we introduce notation as shown in Figure 20. Here, point G is the foot
of point D on the xy-coordinate plane. (We note that this point G is symmetric to point F as
introduced in Figure 19 with respect to the x-axis, because of the symmetry with respect to the
xz-plane.) We define OG = x and GD = h. Since quadrilateral ABCD results by placement of a
unit square folded along its diagonal, we have AB = BC =CD = DA = 1 and BD =

√
2 Also,

we have already noted that the coordinates of A are (1
2 ,0,0), which gives us AO = 1

2 . We are
now ready for a little bit of calculation.

Since BDG is a right triangle, we have BG2 +GD2 = BD2, or(√
3

2
+ x

)2

+h2 = (
√

2)2,

which is equivalent to
3
4
+
√

3 · x+ x2 +h2 = 2.

Also, in right triangles AOG and AGD, we have AO2+OG2 = AG2 or 1
4 +x2 = AG2 and AG2+

GD2 = AD2, or (
1
4
+ x2

)
+h2 = 1.

Subtracting the second equation from the first gives us

1
2
+
√

3 · x = 1,

which is equivalent to
√

3 · x = 1
2 or x =

√
3

6 . We see that

OF = OG = x =

√
3

6
=

1
3
·
√

3
2

=
1
3
·OB

does indeed hold as required, and the model resulting in Figure 16 is indeed a Type (A) PEO
with edges on the regular tetrahedron, as claimed.

6 Some Intriguing Type (E) and (F) PEOs

Now that we have an overview over Type (A) models, which all have edges of unit length, we
can begin our search for models whose edges correspond to more than four edges of a Platonic
solid.

6.1 6 Edges on a Cube

If we wish to find a PEO with its edges on exactly six edges of a cube, we must first determine
a closed path composed of six cube edges. One such polyline is shown in Figure 21. On the
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Figure 21: a PEO covering six edges of a cube

Figure 22: folding pattern

left, we see a path leading around the “outside” of the cube, and to its right, we see a model of
an associated PEO. Underneath these two, we see the folding pattern that creates this model.

We note that each of the edges is covered by half of an edge of the folding square, with one of
the edges being covered three times in a zig-zag fashion.

It is now interesting to note that another PEO, also covering six edges of the cube, but along a
different path, can immediately be derived from this one. We see this illustrated in Figure 23.
Here, the polyline is the path around two adjoining faces of the cube, as we can see in the
left-hand picture. The model covering this path results from the previous one by simply folding
over one corner, as shown in the right-hand picture. Again, we also see the associated folding
pattern in the picture below.
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Figure 23: another PEO covering six edges of a cube

Figure 24: folding pattern

6.2 8 Edges on a Cube

We now turn our attention to folding a unit square in such a way that the edges of the resulting
origami are concurrent with eight edges of a cube with edge-length 1

2 , without repetition. To
this purpose, we first note that any possible origami O∗ with this property must leave the edge
of the square as shown in Figure 25. This placement is unique, except for rotations, as there are
three cube edges meeting in each cube vertex, and any edge of a possible O∗ must pass through
any such vertex an even number of times. This means that the edge of the O∗ will pass through
any cube vertex twice, as eight of the twelve cube edges must be covered.
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Figure 25: 8 edge placement

In order to fold an O∗ with edges as shown in Figure 25, the four corners of the folding square
must be placed in four vertices of the cube. Such a placement in one cube vertex is suggested
in Figure 27.

Figure 26: square on cube 1

If we name the cube vertices A,B,C,D,E,F,G,H in the order required by the edge polyline
shown in Figure 25, we see that triangle AHB must be covered by triangle A′H ′B′ on the folding
square A′G′E ′C′, as illustrated in Figure 27. Specifically, this means that there can be no
additional creases in the folding square that cross this triangle, as any such a crease would
shorten the distance between at least one pair of triangle vertices, and these right triangles must
both have legs of equal length 1

2 , and must therefore be congruent.

Moving on to Figure 28, we then see that this must also hold true for triangles BCD, DEF
and FGH, which must be covered by the congruent triangles B′C′D′, D′E ′F ′ and F ′G′H ′,
respectively. Lines B′D′, D′F ′, F ′H ′ and H ′B′ of the folding square must therefore fold to
diagonals BD, DF , FH and HB of the cube faces, respectively. In other words, the sides of
square B′D′F ′H ′ must fold to four edges of the regular tetrahedron BDFH.
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Figure 27: square on cube 2

Figure 28: square on cube 3

We already have a method to do this at our disposal from Section 5, and this means that we
can create an origami O∗ with the required property as shown in Figure 29 (with the embed-
ded tetrahedron suggested in the right-hand part of the figure), applying the folding pattern in
Figure 30.
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Figure 29: a PEO covering eight edges of a cube

Figure 30: folding pattern

6.3 12 Edges on a Cube

After discussing the above models, it is intriguing to consider what the simplest PEO covering
all twelve edges of the cube might look like. Unfortunately, no solution to this problem is
available at this time, but perhaps an interested reader of this paper might be motivated to find
such a model. It is clear that there can be no such model with edge-lengths of 1

3 , since any such
a model must result from three cube edges being covered by each of the sides of the folding
square. This would require a closed polyline composed of all twelve edges of the cube, each
covered exactly once. Such a polyline is not possible, since each closed polyine on the edges of
the cube must have an even number of segments meeting in each of the cube’s vertices. Since
an odd number of edges, namely three, meet in each vertex, such a polyline cannot exist. It
does seem like there could be a reasonably simple PEO with an edge length of 1

4 , however, and
finding an example of such a model would seem to be a logical next step.
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6.4 8 Edges on an Octahedron

Having discovered a Type (E) PEO on eight edges of the cube, we can optimistically hope that
such a model might also be reasonable easy to find on eight edges of the regular octahedron.
As it happens, this does, indeed, turn out to be the case.

First of all, we will once more need to find a closed polyline on eight edges on the regular
octahedron, and such a polyline is illustrated in Figure 31.

Figure 31: closed polyline on 8 octahedron edges

We start by folding the traditional square base and opening it up a bit, such that the four flaps
are perpendicular to each other. This is already quite suggestive of a regular octahedron, as we
see in Figure 32.

Figure 32: square base with perpendicular flaps

To complete the PEO, we now only need to fold two of the individual bottom flaps up, as
shown in Figure 33. This results in a model with its edge on eight octahedron edges as shown
in Figure 34.
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Figure 33: 8 edges

We note that there are two distinct ways to place the resulting flaps, with the version shown on
the left having these flaps pushed inward toward the center of the model, and the version shown
on the right with these flaps sticking out.

Figure 34: 8 edges

Finally, the folding patterns for these two versions of the model are shown in Figure 35.
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Figure 35: 8 edges

6.5 12 Edges on an Octahedron

Again, it is now intriguing to consider what the simplest PEO covering all twelve edges of
the octahedron might look like. Unfortunately, as for the cube, no solution to this problem is
currently available. In the case of the octahedron, there may well be a model with edge-lengths
of 1

3 , since a closed polyline composed of all twelve edges of the octahedron, with each edge
covered exactly once, does exist. Finding a model covering such a polyline could also be a
worthwhile next step in the discovery of interesting PEOs.

7 Conclusion

The models described in this paper are not too complex, but they all share the fascinating
property of having their edges exclusively on the edges of Platonic solids. As mentioned in
the introduction, we have been searching for models determined by their edges, and we have
found a number of models determined by parts of the edge networks of cubes, tetrahedra and
octahedra. Of course, we have not yet found any PEOs that are reconstructions of the entire
edge network of a Platonic solid, apart from the trivial reconstruction we can derive from the
one-edge models in Section 4. Finding such models would certainly be a fascinating next step!
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